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NUMERICAL ACOUSTIC HULL ARRAY OPTIMIZATION

1. INTRODUCTION

Traditional approaches to acoustic hull array design have focused on the optimization of
desirable beam pattern properties such as the maximization of array gain or the minimization of
sidelobe levels (references 1-3). Unfortunately, such traditional design approaches are applicable
at only a single frequency. In general, the fundamental design goal for a passive acoustic hull
array is an optimal broadband detection capability. To achieve this goal, an optimal hull array
design procedure based on a broadband-detection criterion is required.

A revolutionary approach to large-scale submarine acoustic hull array design that focuses
on the optimization of the beamformer response has recently been developed by Streit and
Wettergren (reference 4). This approach is based upon maximizing the deflection coefficient of
a classical square-law detector under the assumption of a small signal-to-noise ratio (SNR).
Streit and Wettergren have derived an expression for the variance of the output of a square-law
detector whose input is the beamformer output. The noise-only output variance (of the detector)
is the theoretical basis of the objective function, which is appropriate for either correlated or
uncorrelated noise sources that can be distributed either discretely or over a continuum. This
objective function accounts for noise sources, beamforming effects, and structural-acoustic
energy transfer of offending disturbances. (The theoretical development of the objective

function and its gradient are given in reference 4.)

In this report, the optimal hull array design approach of Streit and Wettergren is applied
to obtain the optimum element weight distributions for several line arrays. Although Streit and
Wettergren have formulated the optimization problem to address single-beam as well as
multiple-beam designs, only single-beam designs are considered. In the examples described
here, only point sources of noise are considered. In the case of several noise sources, the
excitations are assumed to be uncorrelated. In contrast, the responses of the array hydrophones
are generally correlated with respect to each other. The power spectra of the noise sources
considered are assumed to be uniform over each frequency band of interest. The results are
obtained for arrays that are conformal with an air-filled, fluid-loaded spherical elastic shell. A
spherical shell is used here because analytical expressions exist for the velocity and pressure
fields (references 5-6).



A nonlinear optimization algorithm is applied to obtain numerical results for the optimal
hull array design. Results are obtained for line arrays that operate over both low- and high-
frequency bands, which correspond to element spacings of a small fraction of a wavelength and
one-quarter to one-half of a wavelength, respectively. In addition, the noise-only beamformer

output spectra are plotted and compared for optimum, uniform, and cosine-tapered weights.



2. DESCRIPTION OF OPTIMIZATION PROBLEM

Consider a hull array consisting of M hydrophones that are steered to receive an incoming
plane wave in the direction described by the unit vector g? ;- Under low SNR conditions, the
deflection coefficient d for the beam steered in the look direction é ; is directly proportional to
the ratio of the total signal power in that beam to the standard deviation of the square-law
detector output waveform (under the noise-only hypothesis) (reference 4). Under the
assumptions that é ; is exactly the signal-arrival direction, that the incoming plane wave excites
only the hydrophones and not the hull, and that the angular response of each hydrophone is
omnidirectional with a flat spectral response, Streit and Wettergren (reference 4) have shown that

the optimum deflection coefficient is found by solving the following minimization problem:

wERM

fmax
min j Vi fiw,E) df ¢))

Jmin

subject to the linear equality constraint

M
PIRTES )

m=1

and the non-negative constraint on the hydrophone weights

w,20, m=1,2,...M. (3

In equation (1), fis the frequency in Hertz (Hz), the frequency band f,,;, < f < f,,.. denotes
the bandwidth of the receiver, w = [w, w,, ..., w M]T is the column vector of element
(hydrophone) weights, and V denotes the (noise only) beamformer output spectrum. The
objective function in equation (1) is proportional to the variance of the output of the square-law
detector under the noise-only hypothesis. It should be noted that equation (1) is a modification
of the objective function derived by Streit and Wettergren (reference 4) and is more suitable for
obtaining numerical results. The derivation of equation (1) from the original objective function
in reference 4 is given in appendix A. Formulas for the components of the gradient of the

objective function are also given in appendix A.

The optimization problem involves a nonlinear objective function subject to a linear
equality constraint. The unknown real variables in equation (1) are the M hydrophone weights




w,,m=1,2, .., M, expressed in terms of an M-dimensional real vector w. Numerical results

for the optimization model are obtained through use of the nonlinear programming algorithm
NPSOL developed at Stanford University (reference 7). NPSOL uses a sequential quadratic
programming (SQP) algorithm in which the search direction is the solution of a quadratic
programming (QP) subproblem. SQP algorithms are generally superior to gradient descent
methods because they exhibit a higher rate of convergence in the vicinity of the solution
(references 8 and 9). In addition, an SQP algorithm is well suited to this application because the
objective function is quartic in the element weights. NPSOL has been successfully applied in the

beam pattern optimization of conformal antenna arrays (reference 10).

A FORTRAN 77 driver program was written to apply NPSOL to the acoustic hull
array optimization problem. For a given array, the driver program reads in the array element
coordinates and the spectral Green’s function (or transfer function) associated with a given noise
source at various frequencies across the band of interest. The driver program then calls NPSOL,
resulting in an optimum set of weights. The optimization results are validated by checking them
for various starting points. In the present optimization problem, the objective function and its
gradient are evaluated via numerical integration. The method of overlapping parabolas
_ integration rule (reference 11) is applied here in order to perform the integration in the case
where the spectral Green’s functions are obtained at unequally spaced frequencies. A derivation
of the overlapping parabolas integration rule is given in appendix B. A comparison of the
performance of the overlapping parabolas rule with the trapezoidal and Simpson’s rules is also

given in appendix B.




3. POINT-EXCITED, FLUID-LOADED SPHERICAL SHELL

This report considers an air-filled, fluid-loaded spherical elastic shell of radius a and shell
thickness £ as shown in figure 1. The sphere is excited by a time-harmonic point force located at
the north pole of the sphere. For the examples considered in this report, the diameter of the
sphere is 15 ft (a = 7.5 ft = 2.286 m) and the shell thickness to radius ratio #/a is 0.011. The
spherical geometry was chosen because analytical formulas can be derived for the velocity and
pressure fields. Two array examples are examined here, i.e., a line array centered at the antipode
(6=180°), as shown in figure 2a, and a line array centered at = 140°, as shown in figure 2b.

Time-
Harmonic
Point Force

Spherical
Shell

Figure 1. Point-Excited, Air-Filled, Spherical Elastic Shell in a Fluid

A set of MATLAB® programs has been written by Professor Peter Stepanishen of the
University of Rhode Island to compute the velocity and pressure fields for an in-vacuo, or fluid-
loaded, spherical elastic shell (air filled) that is excited by a time-harmonic point force located at
the north pole of the shell (figure 1) (reference 6). Of particular importance to the beamformer
optimization code (used to generate the results presented in this report) is the pressure field along
the surface of the elastic shell. The transfer function H(f; p,,, 4. E « )» Which is defined in
appendix A, is the surface pressure at a point p,, on the shell surface that is produced by a time-
harmonic (at a frequency f) point force located at a point g;, on the surface of the shell and
oriented along the ¢ ; direction.




Time-
Harmonic
Point Force

Time-
Harmonic
Point Force

No. 11

Figure 2b. Eleven-Element Line Array Centered at 6 = 140°




Stepanishen’s MATLAB programs were developed for two purposes, i.e., to provide
results for the validation of a finite-element code that is required for producing transfer functions
for a more general geometry and to generate the transfer functions needed for the optimization
results presented in this report. The MATLAB programs implement some analytical formulas
for the structural-acoustic velocity and pressure fields that are expressed in terms of

eigenfunction expansions.

The analytical formulas for the velocity field of the shell and the corresponding pressure
field that are implemented in the MATLAB programs were derived by Stepanishen and
Wettergren (reference 6). These formulas result from the solutions of the equations of motion
for the shell. The normalized equations of motion for the shell, when immersed in a fluid, can be
expressed as (reference 6)

Lll L12
L21 L22

F*(x)
F*(x)

—a
h

U(x)
W(x)

U(x)
-Q? [ W(x)

al O
“h [P(x)} ’ @

where x = x(a,6) denotes a point on the middle surface of the spherical shell and 6 denotes the
polar angle in spherical coordinates. The terms L, denote partial differential operators in
spherical coordinates while U(x) and W(x) represent the in-plane and normal displacements,
respectively, of the middle surface of the shell. A steady-state time-harmonic field dependence
¢™ has been assumed in equation (4), where Q = 2nfalc, 1s the normalized frequency, c, is the
speed of sound in the shell, and i = ¥=1 . The force density terms F*(x) and F*(x) in equation (4)
represent the mechanical excitations on the shell while P(x) denotes the acoustic pressure that
acts on the shell as a result of the nonzero normal velocity of the shell.

For a point-force excitation at 8= 0 (figure 1), the force density terms in equation (4) are

F(x)=0, (5a)

F,4(6)

W —
F' ) =55na

(5b)

where F, denotes the amplitude of the force and ¢ denotes the Dirac delta function. Substituting

the excitations (5a) and (5b) into equation (4), Stepanishen and Wettergren have shown

(reference 6) that the surface pressure can be expressed as

2 ) h(Qc /c,)
Py =i Lo 3 QDR p g g) 000 6)
Pplp =0 Z)'+Z, h(Qc lc,)




where p, and p, denote the densities of air and the shell, respectively, c, is the speed of sound in
air, Z, is the modal radiation impedance, Z ;)1 is the total modal mechanical impedance, P is the
Legendre polynomial of order s, and A, and h,'s are the spherical Hankel function (of the first or
second kind) and its derivative, respectively. Formulas for Z, and Z ;’)l are given in reference 6.
Stepanishen and Wettergren have shown that their formulas are equivalent to the existing

classical formulas given in Junger and Feit (reference 5).

Expression (6) neglects structural damping. Without structural damping, the denominator
of equation (5) will vanish at each resonant frequency Q_, resulting in an unrealistic infinite
surface pressure. Small losses can be accounted for through the multiplication of the speed of
sound in the shell ¢, by 1 + i), where 7); represents the structural damping or loss factor, with
7, « 1 (reference 5). The effect of the replacement of ¢p by ¢,(1 +i7]) in equation (6) is the
removal of resonant frequencies from the real frequency axis and, thus, remove the singularities
from the pressure field. According to Stepanishen (reference 12), typical values for the structural
damping factor range from 0.01 to 0.1.

The effect of structural damping on the integrand of the objective function V2(f;w, .73': )
over two different frequency bands is shown in figures 3a and 3b . In these plots, V(f;w, é )
was computed for the line array described in figure 2a with uniform weights and a beam steered
at the look angle 6, = 180°. Figure 3a shows the integrand plot over the low-frequency band
(250 Hz £ f < 1000 Hz) while figure 3b applies to the high-frequency band (1723 Hz < f < 3446
Hz). The plots indicate the existence of numerous resonances across both frequency bands.
Attempts to evaluate the objective function over either frequency band with no structural
damping did not produce a convergent result. The plots show that for very small damping
(77, = 0.01) the resonances are attenuated significantly. Most of the resonant peaks are removed
from V2(f;w, é p for a structural damping factor of 0.05. This damping factor will be used in the
examples that follow, because the integrand plots over both frequency bands are fairly smooth.

Expression (6) involves an infinite summation over the various modes of the spherical
elastic shell. Stepanishen and Wettergren (reference 6) have determined that 150 modes (terms
in the summation) are more than sufficient for convergence of the velocity and pressure fields

over the frequency bands of interest.



081 = g a18uy Yoo ayy 1w pasaays wpag v puv spySrap wiofiug) ypm vz 24nSiy
u1 paquidsa( Kvaay aury ayj 4of pung £ouanbadJ-moy ayj 4240 uoydOung 2a1323[qQ 2y3 fo puvi3apuj ‘vg 24n31g

(zH) Aduanbaig

0001  0S6 00L 09 009 0SS 00§ OS¥r O00F 0Se 00¢ 0SC
T Y T T Y Y T T T r T 0

| ! ]

_ \\. | ”
1 | 1

iho ! fEoa |

PR L

i ’ # \/ ..C_x 1 7
g N, AN, Y \ Tor

v e i Nt {

— T\ / N N _ i

/.. ~......,f.r~\\ \ B _,. }

_ 1% N
NP7 s - T e AT

Vol o S - ] ..\\ 5 -

B \L\-.. - :_.e...\. f.s.. ”

Y e L \ ]
M Sl a Nw/ \J_ AN : i xn; 0z

- 4 T

A 1 , iy
) y ] | A M_ 1

¢ A y i |
- 0¢

@A “301



ul paquiasa(q Aviiy aury ayj 10f puvg Kouanbau,-ySify ayp 4240 uonoun,y aaysalqQ ayy fo puviSajuy “qg 2anSy

00S¢

08I =g a18uy 3007 ay1 1p pasasys wwag v puv spySap wiofiun Ypm vz aansny

(zH) Aduanbaig
_ 00¢ce 001¢ 0062 00LT 00€¢ oo“mm oo_ﬁm 0061 00L1
[ :
/|
\ ]
— s
! v
~
= 01
- S1
o~ ..!j..
e O
0¢
._ﬂmmvﬁ”_ 7 ../,
I A} Y mN
k] "
0¢

®),A "'Sor

10



4. OPTIMIZATION RESULTS

The 11-element line array considered here is conformal to the surface of the 15-ft
diameter air-filled, fluid-loaded spherical shell described in figure 1. The array elements are
equally spaced and extend across a 60° arc along the sphere. For computational convenience, the
array is placed along the xz-plane. As previously stated, two cases are considered in this report:
the line array centered at the antipode (6= 180°) as shown in figure 2a and the line array
centered at 8= 140° as shown in figure 2b. The 6= 140° case was chosen because the array has
no element located at the antipode. In each example, the spherical shell has a time-harmonic

point force (noise source) located at 8= 0°.

The optimization of each array is performed over two different frequency bands. Over
the low-frequency band of 250 Hz < f < 1000 Hz, the spacing s between elements is 0.0364 < s
< 0.1454, where A is the acoustic wavelength in the fluid. The speed of sound in the fluid is
1500 m/s. The high-frequency band of 1723 Hz < f < 3446 Hz was chosen so that the element
spacing is A/4 <s < /2. In each example considered, the optimum weight distribution will be
plotted along with the corresponding noise-only beamformer output spectrum.

4.1 EXAMPLES FOR LOW-FREQUENCY BAND (250 Hz < f < 1000 Hz)

In considering the 11-element line array centered at 8= 180° with a time-harmonic point
force located at 8= 0°, it is noted that the resulting transfer function magnitude plots at the
locations of elements 1 to 3 and elements 4 to 6, are shown in figures 4a and 4b, respectively.
Because the transfer function is axisymmetric for a point source located at 8= 0°, the transfer
functions for elements 7 to 11 are not plotted. Of particular importance in figures 4a and 4b is
that the transfer function at the center element (no. 6) is noticeably larger than at the other
element locations across most of the frequency band. This peculiarity is attributed to the fact
that it lies at the antipodal point with respect to the source, which will have a noticeable impact
on the optimization results as described below.

Figure 5a is a bar graph of the optimum weight distribution for the line array in figure 2a
for a beam steered at the look angle 8= 180°. The weight distribution is unusual because the
minimum weight is at the center element. This can be attributed to the large transfer function

magnitude at the center element location over most of the frequency band. Because the objective

11



function and gradient terms are on the order of 10? for the optimization of the line arrays in
figures. 2a and 2b, they are each multiplied by 10-3 in the optimization program so that they are
on the order of unity. This scaling of the objective function has no impact on the optimum
solution,; it only improves the numerical convergence. It should also be noted that the scaling

factor for the objective function varies with each example.

The weight distribution in figure 5a is symmetric with respect to the center element. This
same result was obtained for several feasible starting points (i.e., initial weight distributions that
lie in the allowable domain as defined in equations (2) and (3)). However, it was observed that
some infeasible starting points resulted in the same optimum objective value but different
optimum weight distributions than the one in figure 5a. The reason for this peculiarity is that
the transfer function and the array are each symmetric with respect to the beam-steering angle
6, =180°. Consequently, the same objective function value is obtained for different element
weight distributions such that the sums of the weights of opposing elements with respect to the

center element are the same. This can be expressed mathematically as

Wp+Wip,=cp0 n=1,2,3,4,5. 0

In equation (7), the c,’s are constants. If the weights are further constrained to be symmetric
with respect to the center element, the optimum distribution in figure 5a will be obtained for both

feasible and infeasible starting points.

Figure 5b is the optimum weight distribution for the line array in figure 2a for a beam
steered at the look angle 8, = 150°. The weight distribution still has a minimum at the center
element, but it is asymmetrical with respect to the array center. Note that relatively larger
weights are on the side of the array in which the beam is steered, as expected. The same

optimum weight distribution was obtained for both feasible and infeasible starting points.

Figure 6 shows the line array centered at 8= 180° with three time-harmonic point forces
that are each diametrically opposite with respect to one of the three center elements (numbers 5
to 7). Note that the three forces are in phase and of equal amplitude. The purpose of this
exercise is to see if the optimum weights produced at element numbers 5 and 7 are significantly
reduced from those in figures 5a and 5b. Figures 7a and 7b illustrate the optimum weight
distributions for beams steered at the look angles 6, = 180° and 8, = 150°, respectively. The
graphs show the expected results, i.e, that any element that is located at an antipodal point with

respect to a point source will have a small optimum weight.
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As previously mentioned, the beamformer optimization applied here is based on the
maximization of the deflection coefficient of a square-law detector. Therefore, to describe the
array performance, the signal-only angular response (beam pattern) of the array at particular
frequencies over the band of interest is not suitable. Instead, the array performance is described
in terms of the noise-only beamformer output spectrum V(f). An expression for the noise-only
beamformer output spectrum associated with K point-force excitations is given in appendix A in

terms of the angular frequency @and is rewritten in terms of the frequency fin Hertz as

K M

. 2 C2nf ~
V(f;w,E) =2 N (/) Z W HUF P G50 €0 exp[' —C‘—(p,,,'E,)} : ®)

k=1 m=1

where N,(f) denotes the power spectrum of point source , p,, is the position vector of
hydrophone m, c is the speed of sound, and H(f; p,,,, qx £ &) 1s the transfer function (spectral
Green’s function) relating a point force located at g, and oriented along the 4 « -direction with
the response measured at p,,. Note that (p,,’ E 1)/ ¢ is the time delay for hydrophone m for a
plane wave arrival from direction é ;- The unit vector E ; in the beam-steering direction is

expressed mathematically as
élzfsin 6,cos ¢, + §sin 6, sin ¢, + Zcos 6, 9)

where ¥, y, and Z denote unit vectors along the x-, y-, and z-directions, respectively, and 6, and
¢, denote the polar and azimuthal angles, respectively, of the beam-look direction. (The reader
is referred to the coordinate system described in figure 1.) In the examples described in this
report, the power spectrum N,(f) of each noise source is assumed to be unity across the frequency

band of interest.

Figures 8a and 8b show plots of the noise-only beamformer output spectra for the line
array described in figure 2a as a function of frequency over the low-frequency band for beams
steered in the look-directions €, = 180° and g, = 150°, respectively. In each of these figures, the
beamformer output spectra are plotted for optimum, uniform, and cosine-tapered weights. In
each case, the weights sum to unity (i.e., equation (2) is satisfied). For the array in figure 2a, the
cosine-tapered weights are given as

w,, = b cos [3(6,,1 - Jt)] , %‘ <0, < 7?“ , m=1,2,..,11, (10)

18




where the normalization constant b is chosen so that the weights sum to unity. The plots in
figures 8a and 8b show that the optimum weights produce a significant improvement in the
beamformer output across the entire frequency band of interest. The plots also indicate that the
optimum weights result in an improvement of almost two orders of magnitude in the beamformer
output spectrum over the uniform and cosine-tapered weights across much of the frequency band
plotted. This significant improvement will likewise produce an almost two orders of magnitude
improvement in the deflection coefficient. In contrast, the beam patterns for the various weights

would not necessarily show an improvement for the optimum weights.

Figures 9a and 9b show plots of the noise-only beamformer output spectra for the line
array with three noise sources (as described in figure 6) as a function of frequency over the low-
frequency band for beams steered in the look-directions 8, = 180° and §, = 150°, respectively.
The plots indicate a similar improvement in the beamformer output spectrum for the optimum
weights over the uniform and cosine-tapered weights. Note that the beamformer output spectrum
for each weight distribution is larger than the corresponding one plotted in figures 8a and 8b
because there are three times as many noise sources (i.e., K = 3 versus K = 1 in equation (8)).

As shown by Streit and Wettergren (reference 4), the deflection coefficient d for the

beam steered in the look-direction é ; is inversely proportional to the standard deviation of the
square-law detector output waveform under low SNR conditions, i.e.,

> ; (11)
\/f Vi fiw, 51) daf

where the proportionality constant is the signal power S. In the above expression, note that the

integral under the square root is the objective function F(w) for the optimization problem. For a

given weight distribution w and beam-steering-direction é ; » the deflection coefficient index d,, is

fmah
\/f Vz(f w, §l) df

defined as

(12)
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Because the deflection coefficient is proportional to the SNR at the output of a square-
law detector, the difference in deflection coefficient indices for two different weight distributions
provides a measure of the difference in the corresponding SNRs at the detector output for a given
array. The optimum weight distribution will produce the minimum value for the objective

function and will result in the maximum deflection coefficient index.

The SNR improvement with respect to uniform weights ASNR, is defined as

ASNR, = d, (13)

opt B d" ’zmif i

where the subscripts opt and unif refer to the optimum and uniform weight distributions,
respectively. Similarly, the SNR improvement with respect to cosine-tapered weights ASNR, is
defined as

ASNR_ = d,,| (14)

opt ~ }cos ’
where the subscript cos refers to the cosine-tapered weight distribution. The SNR improvements
above are given in decibels (dB) as

ASNR, | = 10log,(ASNR,), (152)

and

ASNR,| =101og,((ASNR,). (15b)
[«

Table 1 presents the objective function for the optimum, uniform, and cosine-tapered
weights and the SNR improvements with respect to the uniform and cosine-tapered weights for
the low-frequency band examples presented in this report. Particular attention should be made to
the first four array examples in the table as these correspond to the results shown in figures 5, 7,
8, and 9. The examples corresponding to the arrays illustrated in figures 2a and 6 show that the
optimum weights produce a 22- to 42-dB improvement in the SNR as compared with the
conventional uniform and cosine-tapered weight distributions. The significant improvement in

the SNR is not surprising considering the beamformer output spectra plots in figures 8 and 9.
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Table 1. Objective Function F(w) for Several Weight Distributions and SNR
Improvements (ASNR) in the Low-Frequency Band Examples

Beam Steering Weight Objective
Arra
y Angle (deg) Distribution Function ASNR (dB)

Figure 2a 180 Optimum 3.536 x 103 -
Uniform 1.796 x 106 27.1
Cosine Taper | 8.413 x 10° 33.8

Figure 2a 150 Optimum 6.008 x 102 -
Uniform 1.472 x 10° 33.9
Cosine Taper | 8.606 x 10° 41.6

Figure 6 180 Optimum 6.629 x 10° -
Uniform 1.207 x 108 22.6
Cosine Taper | 6.141 x 108 29.7

Figure 6 150 Optimum 2.189x 10° -
Uniform 1.070 x 108 26.9
Cosine Taper | 5.617 x 108 34.1

Figure 2b 140 Optimum 2.442 x 102 -
Uniform 8.055x 103 15.2
Cosine Taper | 4.289 x 102 2.45

Figure 2b 170 Optimum 2.551 x 102 -
Uniform 6.649 x 103 14.2
Cosine Taper | 4.371 x 102 2.34

Figure 2b* 140 Optimum 5.004 x 102 -
Uniform 3.575x 104 18.5
Cosine Taper | 9.025 x 103 12.6

*Denotes removal of elements 8 and 9.

Figure 10a illustrates the optimum element weights for the line array in figure 2b for a
beam steered at the look angle 6, = 140°. The weight distribution is tapered with the maximum
weights near the center of the array and the weights dropping off considerably at the ends. A
comparison of the weights for elements on opposite sides of the array (with respect to the center
element) shows that the larger weights are on the side of the array nearest to the source. Figure
10b shows the optimum weights for the same line array with a beam-steering angle of 8, = 170°.

In this example, the weight distribution is more symmetrical than in figure 10b with a maximum

25



value at the center element. The optimum distributions in figures 10a and 10b are quite stable as

the same results were obtained for several feasible and infeasible starting points.
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Figure 10. Optimum Weight Distributions for the 11-Element Line Array Described in

Figure 2b over the Low-Frequency Band (250 Hz < f < 1000 Hz)
Jfor Beam-Steering Angles (a) 6, = 140° and (b) 6, = 170°
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Figures 11a and 11b show plots of the noise-only beamformer output spectra for the line
array described in figure 2b as a function of frequency over the low-frequency band for beams
steered in the look-directions 8, = 140° and 6, = 170°, respectively. As done in the previous
examples, the beamformer output spectra are plotted for optimum, uniform, and cosine-tapered
weights where the weights sum to unity. For the array in figure 2b, the cosine-tapered weights

are given as

w, = b cos [3( m_%‘)}, o, <LZ m=1,2,..11, (16)
where the normalization constant b is chosen so that the weights sum to unity. The plots in
figures 11a and 11b show that the optimum weights produce a reduction in the beamformer
output spectrum across much of the frequency band of interest. Table 1 shows that the optimum
weights produce a SNR improvement between one and two orders of magnitude over the
uniform weights. In contrast, figures 11a and 11b show that the cosine-tapered weights produce
a beamformer output spectrum that resembles the spectrum produced by the optimum weights.
This resemblance is attributed to the optimum weight distributions in figures 10a and 10b being
tapered and somewhat symmetric with a maximum at or near the center element. An indication
of this close agreement for the cosine-tapered weights is shown in table 1 where the

improvement in SNR is only a little more than 2 dB.

Figure 12 is a plot of the optimum weight distribution for the line array in figure 2b with
elements 8 and 9 missing and the beam steered at the look angle 6, = 140°. A comparison of
figures 10a and 12 shows that the weights for elements 1 to 5 have increased at the expense of
decreased values for the remaining elements. (Although element 10 exists in this example, its
weight is zero.) It should be mentioned that the maximum weight in figure 12, ws, equals 0.207
and exceeds the maximum value allowed in the plot. Figure 13 presents plots of the noise-only
beamformer output spectra for the array described in figure 12 for the optimum, uniform, and
cosine-tapered weight distributions. The plots show that the optimum weights produce a more
noticeable reduction in the beamformer output spectrum than for the array without the missing
elements in figure 11a. This observation is validated in table 1, which shows that the optimum
weights produce SNR improvements of 18.5 dB and 12.6 dB over the uniform and cosine-
tapered distributions, respectively. The increase in SNR improvement with respect to the cosine-
tapered weights is attributed to the optimum weight distribution in figure 12 being less tapered
and off-centered than the corresponding weight distribution in figure 10a.
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4.2 EXAMPLES FOR HIGH-FREQUENCY BAND (1723 Hz < f < 3446 Hz)

Consider again the 11-element line array centered at &= 180° as described in figure 2a.
With a time-harmonic point force located at 6= 0°, the resulting transfer function magnitude
plots as a function of frequency across the high-frequency band at the locations of elements 1 to
3 and elements 4 to 6 are shown in figures 14a and 14b, respectively. Because the transfer
function is axisymmetric for a point source located at 8= 0°, the transfer functions for elements
7 to 11 are not plotted. The plots show that the transfer function at the center element (no. 6) is
noticeably larger than at the other element locations over the entire frequency band. (It should

be noted that a similar observation was made for the low-frequency band case.)

Figures 15a and 15b are bar graphs of the optimum weight distributions for the line array
in figure 2a for beams steered at the look angles 8, = 180° and 6, = 150°, respectively. The
optimum weight distribution in figure 15a is somewhat flat, with maxima at elements 5 and 7.
In contrast, the weight distribution in figure 15b is irregular, with a maximum at element 11.
Comparisons of figures 15a and 15b with their low-frequency counterparts in figures 5a and 5b,
respectively, indicate no resemblance.

Figures 16a and 16b are plots of the noise-only beamformer output spectra for the
optimum, uniform, and cosine-tapered weights corresponding to the arrays described in figures
15a and 15b, respectively. In each figure, the beamformer output spectrum for the optimum
weights is considerably smaller than that for the uniform and cosine-tapered weights. Because
the optimum weight distribution in figure 15a is relatively flat, it is no surprise that the
beamformer output spectrum for the uniform weights in figure 16a is noticeably smaller than that
for the cosine-tapered weights. The graphs in figure 16b show that the beamformer output
spectrum for the optimum weight distribution is well below the output spectra for the other
weights than in figure 16a. This difference is attributed to the highly irregular optimum weight
distribution illustrated in figure 15b.
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Figure 15. Optimum Weight Distributions for the 11-Element Line Array Described in
Figure 2a over the High-Frequency Band (1723 Hz < f < 3446 Hz)
Jfor Beam-Steering Angles (a) 6, = 180° and (b) 6, = 150°
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Table 2 gives the objective functions for the optimum, uniform, and cosine-tapered
weights and the SNR improvements with respect to the uniform and cosine-tapered weights for
the high-frequency band examples presented. The results show that, for the array in figure 2a,
the optimum weights produce SNR improvements of 11.5 dB and 17.2 dB over the uniform and
cosine-tapered distributions, respectively, when the beam-steering angle is 6, = 180°. These
SNR improvements increase by more than 10 dB when the beam-steering angle is 6, = 150°.

This increase is attributed to the irregular optimum weight distribution shown in figure 15b.

Table 2. Objective Function F(w) for Several Weight Distributions and SNR
Improvements (ASNR) in the High-Frequency Band Examples

Beam Steering Weight Objective
Array Angle (deg) Distribution Function ASNR (dB)

Figure 2a 180 Optimum 3.646 x 104 -
Uniform 5.112x 10° 11.5
Cosine Taper | 1.935 x 106 17.2

Figure 2a 150 Optimum 3.741 x 10* -
Uniform 5.793 x 106 21.9
Cosine Taper | 3.578 x 107 29.8

Figure 2b 140 Optimum 2.830x 103 -
Uniform 4.006 x 10* 11.5
Cosine Taper | 1.991 x 10* 8.47

Figure 2b 170 Optimum 9.714 x 103 -
Uniform 5.535x 10* 7.56
Cosine Taper | 3.270 x 10* 5.27

Figures 17a and 17b are bar graphs of the optimum weight distributions for the array
described in figure 2b with beam-steering angles of 6, = 140° and 6, = 170°, respectively. The
weight distribution in figure 17a is tapered with a maximum value at element 4; the distribution
in figure 17b is irregular with a maximum at element 2. Comparison of figures 17a and 17b with
the low frequency-bar graphs in figures 10a and 10b indicate that both optimum distributions are

tapered when the beam-steering angle is 8, = 140°, but exhibit no resemblance when 6, = 170°.
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Figure 17. Optimum Weight Distributions for the 11-Element Line Array Described in

Figure 2b over the High-Frequency Band (1723 Hz < f <3446 Hz)
for Beam-Steering Angles (a) 6, = 140° and (b) 6, = 170°
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Figures 18a and 18b are plots of the noise-only beamformer output spectra for the
optimum, uniform, and cosine-tapered weights corresponding to the arrays described in figures
17a and 17b, respectively. As discovered in each of the previous examples, the beamformer
output spectrum for the optimum weights is below the spectra for the uniform and cosine-tapered
spectra over much of the frequency band of interest. Table 2 shows that for the array depicted in
figure 2b the optimum weights produce SNR improvements of 11.5 dB and 8.47 dB over the
uniform and cosine-tapered distributions, respectively when the beam-steering angle is 6, = 140°.

The SNR improvements are 3 to 4 dB less when the beam-steering angle is 6, = 170°.

A comparison of the results listed in tables 1 and 2 gives some indication of the effect of
element spacing on the optimization results. The reader should recall that the element spacing s
between elements is 0.0364 < s < 0.1454 over the low-frequency band and A/4 < s < A/2 over the
high-frequency band. For the array centered at = 180° (figure 2a), the SNR improvements in
the low-frequency band examples are greater than in the corresponding high-frequency band
examples. This observation is somewhat surprising considering that the transfer functions at
each element location are comparable in magnitude across their respective frequency bands. The
expression for the noise-only beamformer output spectrum V(f) in equation (8) indicates that the
differences in these results are most likely attributed to phase differences in the element transfer
functions and in the exponential term in equation (8). For the array centered at 8= 140° (figure
2b), the SNR improvements, with respect to uniform weights, are greater in the low-frequency
band examples. However, the high-frequency band examples produce larger SNR improvements

with respect to cosine-tapered weights.
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5. CONCLUSIONS

The results presented in this report have shown that the optimal broadband array design
procedure developed by Streit and Wettergren produces a significant improvement in the SNR at
the output of a square-law detector when compared with several conventional array weight
distributions. These results indicate that this approach shows considerable promise in future
submarine acoustic hull array design. In order to apply the optimal broadband array design
procedure, the power spectra of the noise sources must be known at a sufficient number of
discrete frequencies across the band of interest. These discrete frequencies do not need to be
equally spaced. In the examples presented here, the noise spectra are assumed to be flat across
the frequency band of interest. The noise power spectra can be obtained either from

measurements or from a structural acoustic analysis of a submarine hull.

Each of the examples presented in this report involved an 11-element line array lying
along the surface of a 15-ft-diameter, air-filled, fluid-loaded spherical shell. The spherical
geometry permitted the application of analytical formulas for the transfer functions that relate a
point-force excitation at one point on the sphere to the resulting surface pressure observed by a
hydrophone at another point on the sphere. The computation times required to generate the
optimization results presented in these examples were generally no more than 30 s on the NUWC
Silicon Graphics Onyx 2 Computer. The computation times are expected to increase as a result
of the following: (1) the number of array elements increase; (2) the number of discrete noise

sources increase; (3) the discrete sources are replaced by continuous ones.

In the upcoming applications planned for the optimal broadband array design procedure,
the air-filled, fluid-loaded spherical shell will be replaced by a larger sphere that is fluid filled.
This example will help to simulate an array conformal to a submarine sonar dome. In addition,
examples involving a continuous noise source and several closely spaced line arrays are planned.
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APPENDIX A
DEVELOPMENT OF THE OBJECTIVE FUNCTION AND ITS GRADIENT
FOR USE IN THE OPTIMIZATION ALGORITHM

The objective function and corresponding gradient for the optimum hull array design
have been derived by Streit and Wettergren (reference 4). In this appendix, the objective
function and corresponding gradient of Streit and Wettergren are revised for use in the

optimization algorithm.

Consider K 2> 1 point-force excitations
(41,81 0(5:42,8))s o (406

at hull locations specified by the position vectors gy, g3, ... g, oriented along the directions
specified by the unit vectors £ 1 62 s £  and with power spectra N1(@), N(@), ..., Nx(@),
respectively. If the excitations are statistically independent, then the beamformer output
spectrum is given by

2
M

K
VO((u;m,él) =Z N (w) 2 w, H(—iw; p,.q;. fk) exp
k=1

m=1

iw ___(Pmc él)] , (A-1)

where @is the angular frequency, w = [w,, w,, ..., w M]T is the column vector of element weights,
P is the position vector of element m, c is the speed of sound, é ; 18 the unit vector in the beam
look direction, and H(-iw, p,,,, 4y £ i) is the transfer function (spectral Green’s function) relating a
point force located at g; and oriented along the {, -direction with the response measured at p,,.

Note that (p,,* z§ ;)J/c is the time delay for hydrophone m for a plane wave arrival from direction é T

Consider a hull array that is designed to maximize the deflection coefficient for the beam
steered in the look direction .§ ;- In this case, the only array design parameters are the element
weights w. Under the assumptions that (1) E ; 1s exactly the signal arrival direction, (2) the
acoustic signal excites only the hydrophones and not the hull, and (3) the individual hydrophone
acoustic beam patterns are omnidirectional with flat spectral response, Streit and Wettergren
(reference 4) have shown that the optimum deflection coefficient is found by solving the

following minimization problem:

A-1




B

mnéi}el“ Fo(lﬂ) - mnéi;rglef VO‘?((U; v, gl) d(l), (A-2)
-B

subject to the linear equality constraint

M
>, =1, (A-3)

m
m=1

and the non-negative constraint on the hydrophone weights

20, m=1,2,... M. (A-4)

In equation (A-2), V, is the beamformer output given in equation (A-1) and B denotes the

specified array bandwidth.

To obtain optimization results for the problem described in equations (A-2) to (A-4), some
simplification of the objective function F, (w) is required. Because the autocorrelation functions of
the K-excitation waveforms and corresponding beamformer outputs are real and even functions of
time, the beamformer output spectrum is a real and even function of @ (reference 13). In addition,
it is more convenient to convert from the angular frequency @to the frequency fin Hertz through
the relation f = @/2z. With the substitution of the above into equation (A-2), the objective

function simplifies to

flll(l\’
F(w) = 4n f Vifiw, E) df, (A-5)
0

where f,,,, = B/27, and the beamformer output spectrum V is equivalent to V,, in equation (A-1)

with wreplaced by 27f. Because the array processor also includes a filter that removes the
lowest frequencies over the band 0 < f < f,,;., the limits of integration in equation (A-5) extend

over the interval (f,,,;,,.f,.a,)- The factor of 47rin the objective function has no effect on the

determination of the optimum array weights. Thus, equation (A-5) reduces to

Jmax
F(w) = f VA(fiw. E) df . (A-6)

fmin

Therefore, the single-beam design optimization problem is

A-2




min,_F(w), (A-T)

wER?

with constraints given by equations (A-3) and (A-4), where the objective function F(w) is given
by equation (A-6). It should be noted that the optimization problem as described by equation
(A-7) with equations (A-3) and (A-4) is equivalent to the original optimization problem as
described by equation (A-2) with (A-3) and (A-4).

The computation of the gradient of the objective function and its constraints are
necessary in the determination of the optimum array weights w. The gradient of the objective
function in equation (A-6) with respect to the array weights is given by

fmax fmax
VEF(m)zf Vm[Vz(f;nz, é,)] df = zf V(f;w, E)V V(fiw E) df,  (A-8)

fmin fm]n

where the gradient operator V,, is defined by

T
v, =|-2, & . -9 (A-9)
* ow,  ow, oW,
For convenience, the following complex-valued auxiliary function is defined as
M
A~ ~ . zﬂ.f ~
of;w.6.4.0= 2w H(f;ppa. O exp|i ¢ (P E)|- (A-10)
m=1
The beamformer output spectrum V given in equation (A-1) with wreplaced by 27f can be
expressed in terms of the auxiliary function ¢ as
K
A . . |2
V) = D N ot B £
k=1
K
= 2 N 9w 80, ) ¥ (F:w. 8,9, 6 » (A-11)
k=1

where * denotes the complex conjugate. Therefore, the gradient of the beamformer output

spectrum is

A-3




K

v, V(fiw. &) = Z N/ V&[ o(f1w. €., ) ¢* (/.6 4y, ék)}

k=1

K

:22 Ni(f) Re {(P(f;wa Erqp &) VK[‘/)*(./C? w. E.q,, CAk)J}' (A-12)

k=1

The nth component of the gradient of V is

K

V(f.w, E X ok Fim L. )
L;wl—”ﬂﬂz N,(f) Re (p(f;m’gqu’gk)((/)(f %WEI 9 C

k=1 n

K
~ ~ A 2 ~
=2Z Ny(/) Re rp(f;w,é‘,,qk,Ck)H*<f;p,,,qk,Ck)CXP[—i—?i(p,,'15,)} - (A-13)
k=1

From equations (A-8) and (A-13), the nth component of the gradient of the objective function

F(w)is

Jmax K
oF ~ " o
a‘(vlﬂ) =4 V(f.w, 51) Z Nk(f) Re {q)(f; w, ‘f:v:l’ 9y Ck)
fmin k=l
% & i . ?.J'tf .
H*CJ: Pu 41 0 €XP [“’ = (pa EI)] df - (A-14)

Expressions (A-6) and (A-14) for the objective function and the nth component of its
gradient, respectively, are used in the optimization algorithm. These expressions are computed
via numerical integration through utilization of the overlapping parabolas rule.
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APPENDIX B
OVERLAPPING PARABOLAS INTEGRATION RULE

B.1 THEORETICAL DEVELOPMENT

b
Consider the integral f y(x) dx , where y(x) has been tabulated at unequally spaced
a

abscissas. Let the abscissas be a = x; < x, <x3 <...<xy=b and let

= 2 =N -
P(x)=a,x?+b,x+c, , n=2,3,..,N-1

(B-1)

be the quadratic polynomial that interpolates to y(x) at x,,_;, x,,, and x,,,;. An illustration of the

quadratic interpolation polynomials is given in figure B-1. The integration interval (a,b) is

subdivided into N subintervals (x,,, x,,, 1), where y(x) is represented as

Pz(x) , X SXsX,

V(x) = %[Pn(x)+Pn+l(x)], X,SXsx n=23...,N-2 |,

n+1°

Py (%), xy_;=x=x,

Note that no smoothing is done over the first and last intervals.

P;(x)

Piv1(x)

Figure B-1. Overlapping Parabolas Integration Rule

(B-2)

B-1



The quadratic polynomial P,(x) can be expressed as follows:
Pn(x) =a, (X_Xn— 1)2 + ﬁn (x =X )Y, 1 (B-3)

where

o = (Xn_xn—l) (-Vn+l_yn—l)—(xn+1_Xn—l) (yn_yn—l) , (B-4)

n
(X" X l) (Xn+ 1~ XY= 1) (Xn +1° Xn)

and

2 2 s
(le+ 1~ Y- ]) ()’,, ~Vn- 1) - (xn ~ X 1) (.Vn+ 1" V- 1)

(B-5)
('xn X 1) (X” w17 1) (xn +1° X”)

/3":

In the above expressions, y, = y(x,). With the approximations in equation (B-2) for y(x) over the

various subintervals, the integral of y(x) over (a,b) is given by

N-2 .
b X, “n+1 Xy
f y(x) dx s] 'Pz(.x) dx +% E f [P"(x) +P, 1(x)] dx +f P, _,(x)dx., (B-6)
¢ i T =2 Jx, s

The above integrals can be evaluated in closed form as

.\’:
X:
f P,(x) dx :f
.T]
RY

1

S
Ay (X=x)+ By (x=x)+y,| dx

(x,=x,)3 (x,—x,)?
= (1, —2 3 1 +p,—= 3 L +y, (0 =x)) B-7)

5
an (x_xn—l) +ﬁn (.X—.X"_l) +,V,,_1] dx

. 3 3
C (V=% y) _(xn_xn—l)
=y 3 3

~ ~
(x, 17521 _ (X, =%, 1) }
2 o/

+ﬁll

+Vuo1 (X” +17 X") ’ (B'S)
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n

xn+1
xn+l
— 2
fx Pn+1(x)dx_f [a71+1(x—x11) +ﬂn+1(x_xn)+yn dx
x

n

3 2
(X1 =) + B (xn+1_xn) _
n+1 3 n+1 2 In\n+1 n?

AN
N
f Py _(x)dx =
AN-1 B

N-1

(B-9)

= a

Oy (F=xy_ )P+ Py =Xy )+ Yy _,| dx

= oy

(ry=Xy_o)° _ (ty_1=Xy_2)°
3 3

2 2
(y=y_2)° (y_1=%y_))
2 2

+ By, +Yy_o Gy —Xy_ ). (B-10)

The substitution of equation (B-7) through (B-10) into (B-6) gives

b J 3 (xz_xl)z
fa yx) dx = a, 3 + B, 5 +y (X —xy)

-

N-2
3 3 3
+ 1 o (X1 =X 1) _ (=%, 1) + o (X1 = %)
2 n 3 3 n+1 3
n=2
2 2 2
+ B Xy 1= Xuo1) __(xn_xn—l) + B (i1 =)
n 2 2 n+1 2
+ ()’,1_14')7,,) (xn+1_xn)}
3 3|
+a (Xy—Xy_o) _(xN-l_xN—z)
N-1 3 3
(y=Xy_p)? (xN—l_xN—2)2-‘
+Bn-1 5 - 5 + ¥y o Xy =Xy ). (B-11)




The above expression can be simplified to

b (X, —x,)3 (x,—x,)2
fay(x)dxez%— o, 231 + B, 221
N-2 . i
X —x ] X -X <
+% "(n+13n—]) +/,))n(n+12n—]) ]
n=72
3 3
+ o (ry=xy_9)° 1 Gy =y o))
N-1 3 2 3
(Gy=xy )% ] (O =y o)?
* By 2 "2 7
N-3
+ % yl [(XS_«YI) +(X2_r1)] + 22 )7’1 (x"+2._.x”)
- n=
Yy (xN—xN_1)+(xN—xN_2)]}. (B-12)
If the abscissas are equispaced, i.e.,x,,;—x, =A,n=1, 2, ..., N— 1, the above expression
quisp n+1 n p
reduces to
N_2
b A3 A2
fa y(x) dx = %[az—s——+/32—2— +A22 [a" ‘;A +ﬁ"]
n=2
N-3
3 2
+ay 2B py %+%{3y1+ 2.v,,+3.vN_2} (B-13)
- - n=2
where
n:vn+1 2y721+yn 1’ 71_2’3 .,N—l,
2A
/371_ Vn+1+‘})Zn‘3)’n 1, 1122,3, .,N—l




B.2 APPLICATION TO NUMERICAL INTEGRATION OF OBJECTIVE FUNCTION

Before the overlapping parabolas integration rule could be applied to the optimal
broadband array design algorithm, it had to be validated through evaluation of various integrals
for which analytical results exist. The validation examples included various types of integrands,
e.g., ones that were fairly smooth, oscillatory, or with cusps at one of the endpoints. In each
example, the overlapping parabolas integration rule produced results that were in agreement with
the analytical results, and, in most cases, the integrals converged after a reasonable number of
iterations. In the examples where unequally spaced abscissas were used, the overlapping
parabolas integration rule also produced satisfactory results.

As mentioned, the overlapping parabolas integration rule is to be applied in the
evaluation of the objective function and its gradient at each iteration in the optimization
algorithm. Before the optimization algorithm can be applied, it is necessary to know the number
of frequency points required to obtain sufficiently accurate results for various weight
distributions. This information is necessary because the optimization algorithm requires the
transfer function at the array element locations before proceeding with the optimization
calculations. In the present work, numerical convergence to seven or eight decimal places is
considered adequate.

Tables B-1 through B-4 list the objective function evaluated by several integration rules
for various numbers of equally-spaced frequency points for the line arrays described in figures 2a
and 2b. Tables B-1 and B-3 involve the low-frequency band (250 Hz < f < 1000 Hz), and tables
B-2 and B-4 involve the high-frequency band (1723 Hz < f < 3446 Hz). In each table, the
objective function was computed for a uniform weight distribution because it was determined to
provide convergence results that are representative of other weight distributions. Results are
compared for the trapezoidal, Simpson’s, and overlapping parabolas integration rules. The
trapezoidal rule requires linear interpolation between abscissas, in contrast to Simpson’s and the
overlapping parabolas integration rules, which require quadratic interpolation. Because a
quadratic interpolation between abscissas involves a smaller truncation error than for linear
interpolation, Simpson’s and the overlapping parabolas integration rules generally converge
faster than the trapezoidal rule.

Tables B-1 and B-2 list the objective function evaluated for various numbers of frequency

points across the low- and high-frequency bands, respectively, for the line array in figure 2a with a
beam-steering angle of 6, = 180°. In table B-1, the objective function converges to eight decimal
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places for 1000 frequency points with the overlapping parabolas rule and for between 2000 and
3000 frequency points with Simpson’s rule. In contrast, with the trapezoidal rule, the objective
function converges to only six decimal places for 3000 frequency points and appears to converge
to seven places for 6000 frequency points. Table B-2 indicates that the objective function
converges to eight decimal places for 1000 frequency points with the overlapping parabolas rule
and for 2000 frequency points with Simpson’s rule. In contrast, table B-2 indicates that with the
trapezoidal rule the objective function converges to six decimal places with 2000 frequency points
and again appears to converge to seven places for 6000 frequency points. Therefore, tables B-1
and B-2 indicate that the overlapping parabolas integration rule requires no more than 1000

frequency points to compute the objective function with eight decimal place accuracy.

Tables B-3 and B-4 list the objective function evaluated for various numbers of frequency
points across the low- and high-frequency bands, respectively for the line array described in
figure 2b with a beam-steering angle 6, = 140°. In table B-3, the objective function converges
to seven decimal places for between 1000 and 2000 frequency points and converges to eight
decimal places for between 3000 and 4000 frequency points with the overlapping parabolas rule.
Table B-3 also shows that the objective function converges to eight decimal places for between
2000 and 3000 frequency points with Simpson’s rule. In contrast, with the trapezoidal rule, the
objective function doesn’t show convergence to even six decimal places with 6000 frequency
points. Table B-4 indicates that the objective function converges to eight decimal places for
between 500 and 1000 frequency points with the overlapping parabolas rule and for 500
frequency points with Simpson’s rule. The data in table B-4 show that with the trapezoidal rule
the objective function converges to eight decimal places for between 3000 and 4000 frequency
points. In summary, tables B-3 and B-4 show that the overlapping parabolas integration rule
requires between 1000 and 2000 frequency points to compute the objective function with seven

decimal place accuracy.

As aresult of the convergence tests of the objective functions, it was determined that
approximately 1000 to 2000 frequency points are sufficient for seven to eight decimal place
accuracy with the overlapping parabolas integration rule. Similar convergence tests for the
gradient terms (not shown here) have also been performed with similar convergence results as
the objective function. It should also be mentioned that all computations performed in this report
involve double-precision accuracy (i.e., 15 decimal places). In each of the examples described in

this report, the optimization results were obtained with at least 2000 frequency points.
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Procedures for the Line Array in Figure 2a in the Low-Frequency
Band (250 Hz <f <1000 Hz) with Uniform Weights and a

Beam Steered at the Look Angle 6, = 180°

No. of Frequency
Points

Overlapping
Parabolas Rule

Trapezoidal Rule

Simpson’s Rule

100

2.6294267 x 1010

2.6296756 x 1010

2.6265587 x 1010

250

2.6293594 x 1010

2.6294086 x 1010

2.6293237 x 1010

500

2.6293547 x 1010

2.6293679 x 1010

2.6293508 x 1010

1000

2.6293543 x 1010

2.6293577 x 1010

2.6293539 x 1010

2000

2.6293543 x 1010

2.6293551 x 1010

2.6293542 x 1010

3000

2.6293543 x 1010

2.6293547 x 1010

2.6293543 x 1010

4000

2.6293543 x 1010

2.6293545 x 1010

2.6293543 x 1010

6000

2.6293543 x 1010

2.6293543 x 1010

2.6293543 x 1010

Procedures for the Line Array in Figure 2a in the High-Frequency
Band (1723 Hz <f <3446 Hz) with Uniform Weights and a

Beam Steered at the Look Angle 6, = 180°

No. of Frequency

Overlapping

Points Parabolas Rule Trapezoidal Rule Simpson’s Rule
100 7.4848970 x 10° 7.4832128 x 10° 7.4848169 x 10°
250 7.4843096 x 10° 7.4841299 x 10° 7.4843449 x 10°
500 7.4843014 x 10° 7.4842584 x 10° 7.4843065 x 10°
1000 7.4843010 x 10° 7.4842904 x 10° 7.4843017 x 10°

2000 7.4843010 x 10° 7.4842983 x 10° 7.4843010 x 10°
3000 7.4843010 x 10° 7.4842998 x 10° 7.4843010 x 10°
4000 7.4843010 x 10° 7.4843003 x 10° 7.4843010 x 10°
6000 7.4843010 x 10° 7.4843007 x 10° 7.4843010 x 10°

Table B-1. Convergence Test of the Objective Function with Several Numerical Integration

Table B-2. Convergence Test of the Objective Function with Several Numerical Integration



Table B-3. Convergence Test of the Objective Function with Several Numerical Integration

Procedures for the Line Array in Figure 2b in the Low-Frequency
Band (250 Hz <f <1000 Hz) with Uniform Weights and a

Beam Steered at the Look Angle 6, = 140°

No. of Frequency
Points

Overlapping
Parabolas Rule

Trapezoidal Rule

Simpson’s Rule

100

9.6152579 x 107

9.6340542 x 107

9.6011845 x 107

250

9.6455449 x 107

9.6442003 x 107

9.6469275 x 107

500

9.6465930 x 107

9.6460253 x 107

9.6466297 x 107

1000

9.6466205 x 107

9.6464721 x 107

9.6466206 x 107

2000

9.6466201 x 107

9.6465831 x 107

9.6466201 x 107

3000

9.6466201 x 107

9.6466036 x 107

9.6466200 x 107

4000

9.6466200 x 107

9.6466108 x 107

9.6466200 x 107

6000

9.6466200 x 107

9.6466159 x 107

9.6466200 x 107

Table B-4. Convergence Test of the Objective Function with Several Numerical Integration

Procedures for the Line Array in Figure 2b in the High-Frequency
Band (1723 Hz <f <3446 Hz) with Uniform Weights and a

Beam Steered at the Look Angle 0, = 140°

No. of Frequency
Points

Overlapping
Parabolas Rule

Trapezoidal Rule

Simpson’s Rule

100

8.9649025 x 108

8.9648170 x 108

8.9649436 x 108

250

8.9649006 x 108

8.9648870 x 108

8.9649011 x 108

500

8.9649001 x 108

8.9648868 x 108

8.9649000 x 108

1000

8.9649000 x 108

8.9648990 x 108

8.9649000 x 108

2000

8.9649000 x 108

8.9648998 x 108

8.9649000 x 108

3000

8.9649000 x 10®

8.9648999 x 108

8.9649000 x 108

4000

8.9649000 x 108

8.9649000 x 108

8.9649000 x 108

6000

8.9649000 x 108

8.9649000 x 108

8.9649000 x 108
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